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Abstract. Laguerre 2D polynomials are defined and their properties are investigated. The
Laguerre 2D functions, introduced in [1, 2] are related to the Laguerre 2D polynomials in such
a way that they also include the weight function for the orthonormalization of the Laguerre
2D polynomials. A one-parameter group of transformations applicable to certain classes of
polynomials and discrete sets of functions is investigated and applied, in particular, to Hermite
polynomials and to Laguerre 2D polynomials. These transformations allow us to represent the
polynomials of the corresponding classes by superpositions of the same kind of polynomials with
stretched arguments. They contain limiting cases with delta functions and their derivatives and
lead to regularized representations of the delta functions and their derivatives as demonstrated
for Hermite and Laguerre 2D polynomials. Applications of the Laguerre 2D polynomials and
2D functions and their transformations to problems of quantum optics as the representation of
quasiprobabilities in the Fock-state basis and by normally and otherwise ordered moments are
considered. The inversion of these representations is obtained in all cases. A restricted design of
quasiprobabilities should become possible.

1. Introduction

In this paper, we define and investigate Laguerre 2D polynomials which are related to the
Laguerre 2D functions, introduced in [1,2] in such a way that the last include the square root
of the weight function which is necessary for the 2D orthonormalization of the first. This
orthonormality can be considered as the most important property of the Laguerre 2D functions
in applications. All derived relations show that the Laguerre 2D polynomials are in a great
analogy to Hermite polynomials and Laguerre 2D functions in analogy to Hermite functions in
the 1D case. We introduce the Laguerre 2D polynomials in the next section and discuss some
of their most important properties including generating functions. In section 3, we present
a method for the derivation of an important kind of transformation formula of polynomials
including argument transformations and apply this to Hermite polynomials and Laguerre 2D
polynomials. These transformations form a one-parameter group and allow us to represent
certain classes of polynomials by superpositions of the same kind of polynomials with stretched
arguments and with the stretching factor as a free parameter, however. In section 4, we derive
relations which are necessary for the transition to limiting cases in the Laguerre 2D polynomials
and which are related to the 2D delta function and its derivatives.

From section 5 onwards, we consider applications of the Laguerre 2D polynomials and
2D functions in quantum optics. The most important application is the representation of
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quasiprobabilities. The first quasiprobability was introduced by Wigner [3] for the purpose of
describing quantum mechanics in the most analogous way to classical statistical mechanics by
means of distribution functions over the phase space. This method was further developed and
later applied to quantum optics in many papers, e.g., [4–10] and is now represented in a large
number of monographs and review articles, e.g., [11–20]. The Laguerre 2D polynomials and,
alternatively, 2D functions are the most appropriate sets of functions for the representation of
thes-ordered class of quasiprobabilities [9,10] in the Fock-state basis and for their inversion,
considered in section 5. Another possibility is to represent the quasiprobabilities by complete
sets of ordered moments, in particular, by normally ordered moments [21]. We demonstrate
that in this case, the Laguerre 2D polynomials are the most appropriate set of functions for their
representation and inversion. The connections between different kinds of ordering of powers of
the boson operators [9,10] can also be expressed by the Laguerre 2D polynomials. Practically,
in all 2D problems solved or solvable by usual Laguerre polynomials, one can represent the
solutions much better by Laguerre 2D polynomials. The inversion of all these representations
is obtained. After our groundwork in sections 3 and 4, we consider and generalize in section 7
transformations which were made in the representation of quasiprobabilities. First, we consider
the Pěrina–Mišta representation of the Glauber–Sudarshan quasiprobabilityP(α, α∗) in the
Fock-state basis obtained a long time ago [22, 23] and discussed in [24] (see also [12, 13])
and reformulated by using Laguerre 2D functions in [1, 2]. The essential feature of this
regularized representation is the substitution of the derivatives of the 2D delta function obtained
by a limiting procedure from certain Laguerre polynomials by these Laguerre polynomials
themselves without a limiting procedure but therefore with slightly changed effective matrix
elements of the density operator. Second, we consider transformations which concern the
representation of quasiprobabilities by Laguerre 2D polynomials with stretched arguments.
They are related to a representation of the coherent-state (or Husimi–Kano) quasiprobability
Q(α, α∗) [4, 8] for Fock states expressed by the Wigner quasiprobabilitiesW(α, α∗) [3, 6]
with stretched arguments for certain incoherent superpositions of the density operators of
lower Fock states% = |m〉〈m|, m 6 n recently proposed in [25] (equation (32)). We
derive a transformation which also includes from the beginning, besides the diagonal, the
nondiagonal elements of the Fock-state representation of the quasiprobabilities and discuss
a different aspect of these transformations as representations by functions for transformed
effective matrix elements. By using a more general kind of transformation, as derived in
section 3, one can represent arbitrarys-ordered quasiprobabilities by Laguerre 2D polynomials
with stretched arguments where the stretching factors are free parameters which can be chosen
in appropriate way. These transformations suggest that they can be used for a ‘restricted’
design of quasiprobabilities in connection with the orthonormality relations for the Laguerre
2D functions as explained in section 7.

2. Introduction of Laguerre 2D polynomials

In this section we introduce Laguerre 2D polynomials which are a very effective means for
the representation of many results in quantum optics (quasiprobabilities in Fock-state basis,
ordering problems, moments) and, moreover, in other regions of physics. The Laguerre 2D
polynomials are very closely related to Laguerre 2D functions introduced in [1] and discussed
in [2]. The most relevant property of Laguerre 2D functions is to form a 2D orthonormalized and
complete set of functions which are eigenfunctions of the degenerate 2D harmonic oscillator.
The Laguerre 2D polynomials are related to the Laguerre 2D functions similarly as the Hermite
polynomials to the Hermite functions (eigenfunctions of the 1D harmonic oscillator). The
substantial part of the Laguerre 2D polynomials are Laguerre polynomials but their introduction
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underlines the symmetries as they mostly appear in applications to quantum optics and other
regions of physics. The Laguerre 2D polynomials together with products of two Hermite
polynomials are special cases of a three-parameter set of polynomials which is equivalent to
the two-variable Hermite polynomials [26–31].

We now define the set of Laguerre 2D polynomialsLm,n(z, z∗), (m, n = 0, 1, . . .) as
polynomials of two independent variables(z, z∗) which, in applications, are generally a pair
of complex conjugated variables in the following way (see also [32]):

Lm,n(z, z
∗) ≡ exp

(
− ∂2

∂z∂z∗

)
zmz∗ n =

{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)! z
m−j z∗ n−j ,

Lm,n(0, 0) = (−1)nn! δm,n lim
|z|→∞

Lm,n(z, z
∗)

zmz∗ n
= 1 (m, n = 0, 1, . . .).

(2.1)

They are closely related to the Laguerre 2D functionslm,n(z, z
∗) according to [1,2]

lm,n(z, z
∗) = 1√

π
exp

(
−zz

∗

2

)
1√
m!n!

Lm,n(z, z
∗). (2.2)

The Laguerre 2D functionslm,n(z, z∗) can be generated from the ‘vacuum’l0,0(z, z∗) in the
following way (see the introduction of annihilation and creation operators in [2])

lm,n(z, z
∗) = 1√

m!n!

(
z

2
− ∂

∂z∗

)m (
z∗

2
− ∂

∂z

)n
l0,0(z, z

∗)

l0,0(z, z
∗) = 1√

π
exp

(
−zz

∗

2

)
.

(2.3)

By splitting froml0,0(z, z∗) a factor exp(zz∗/2) and by using the commutation rules of∂/∂z∗

and∂/∂z with exp(zz∗/2), one immediately obtains the following alternative representations
of Laguerre 2D polynomials:

Lm,n(z, z
∗) = (−1)m+n exp(zz∗)

∂m+n

∂z∗m∂zn
exp(−zz∗)

=
(
z− ∂

∂z∗

)m (
z∗ − ∂

∂z

)n
1. (2.4)

The representation of the Laguerre 2D polynomials by the usual Laguerre polynomialsLαn(u)

in their modern definition [26,33–35] is given by

Lm,n(z, z
∗) = (−1)nn!zm−nLm−nn (zz∗) = (−1)mm!z∗n−mLn−mm (zz∗). (2.5)

The relation of the Laguerre 2D polynomials to the Laguerre 2D functions is that the latter
take into account the (square root of the) weight function for the orthonormalization of the
Laguerre 2D polynomials.

We now discuss some important properties of the Laguerre 2D polynomials which can
be derived from the properties of the usual Laguerre polynomials or from the properties of
Laguerre 2D functions considered in [2] or directly from their definition by (2.1) or (2.4). The
symmetry of the Laguerre 2D polynomials is

Lm,n(−z,−z∗) = (−1)m+nLm,n(z, z
∗) Lm,n(z, z

∗) = (Ln,m(z, z∗))∗ = Ln,m(z∗, z)
(2.6)

showing that the Laguerre 2D polynomialsLm,n(z, z∗) possess the parity(−1)m+n. The
lowering of the indices is obtained by the following operations of differentiation

∂

∂z
Lm,n(z, z

∗) = mLm−1,n(z, z
∗)

∂

∂z∗
Lm,n(z, z

∗) = nLm,n−1(z, z
∗) (2.7)
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and the raising of the indices by the operations

− exp(zz∗)
∂

∂z∗
exp(−zz∗)Lm,n(z, z∗) =

(
z− ∂

∂z∗

)
Lm,n(z, z

∗) = Lm+1,n(z, z
∗)

− exp(zz∗)
∂

∂z
exp(−zz∗)Lm,n(z, z∗) =

(
z∗ − ∂

∂z

)
Lm,n(z, z

∗) = Lm,n+1(z, z
∗).

(2.8)

The Laguerre 2D polynomials satisfy the following recursion relations derived from (2.8) by
using (2.7)

Lm+1,n(z, z
∗) = zLm,n(z, z∗)− nLm,n−1(z, z

∗)
Lm,n+1(z, z

∗) = z∗Lm,n(z, z∗)−mLm−1,n(z, z
∗).

(2.9)

One of the most simple generating functions of the Laguerre 2D polynomials together
with its derivation by using (2.1) is [32]

∞∑
m=0

∞∑
n=0

smtn

m!n!
Lm,n(z, z

∗) = exp

(
− ∂2

∂z∂z∗

) ∞∑
m=0

(sz)m

m!

∞∑
n=0

(tz∗)n

n!

=
∞∑
j=0

(−1)j

j !

∂2j

∂zj ∂z∗ j
exp(sz + tz∗)

= exp(sz + tz∗ − st). (2.10)

It is analogous to the most simple generating function for the Hermite polynomials. For
products of two Hermite polynomials, this generating function takes on the form

∞∑
m=0

∞∑
n=0

smtn

m!n!
Hm(x)Hn(y) = exp(2(sx + ty)− (s2 + t2)). (2.11)

In both cases (2.10) and (2.11), we have a special symmetric quadratic form of the two variables
(s, t) in the exponent together with a linear form. By using the 2D unity matrix and the two
symmetric matrices from the three Pauli spin matrices (σx andσz are symmetric whereasσy is
antisymmetric), the general class of symmetric quadratic forms of two variables can be mapped
onto a complex three-component vector and can be parametrized by this vector (see [36] for
a similar case). This is one possible key for the unification of products of two Hermite
polynomials and of Laguerre 2D polynomials and to establish the connection to two-variable
Hermite polynomials.

Similar to (2.10), but more difficult, is the derivation of the following generating function
for squared products of Laguerre 2D polynomials:

∞∑
m=0

∞∑
n=0

smtn

m!n!
Lm,n(z, z

∗)Ln,m(w,w∗) = 1

1− st exp

(
szw∗ + twz∗ − st (zz∗ +ww∗)

1− st
)
.

(2.12)

It is analogous to the formula of Mehler for Hermite polynomials ( [26] equation (10.13.22);
derivation in [33])

∞∑
n=0

tn

2nn!
Hn(x)Hn(y) = 1√

1− t2 exp

(
2txy − t2(x2 + y2)

1− t2
)
. (2.13)

The sum in (2.12) converges in the usual sense only forst < 1 but, surely, this equality can be
extended to more general cases if one considers both sides as generalized functions or linear
continuous functionals. That means the left-hand side in the sense of weak convergence to the
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right-hand side. By transition to the Laguerre 2D functions in (2.12) according to (2.2) and by
substitutings = t = 1− ε/2, one derives the following identity in the limiting caseε→ +0:
∞∑
m=0

∞∑
n=0

lm,n(z, z
∗)ln,m(w,w∗) = exp

(
(z− w)(z∗ − w∗)

2

)
lim
ε→+0

1

πε

× exp

(
− (z− w)(z

∗ − w∗)
ε

)
= δ(z− w, z∗ − w∗) (2.14)

whereδ(z, z∗) denotes the 2D delta function in(z, z∗)-variables (δ(z, z∗) ≡ δ(x)δ(y)). This
is the completeness relation for the Laguerre 2D functions (see equation (3.10) in [2])). The
analogous completeness relation for the Hermite polynomials can be derived from (2.13) by a
limiting procedure. By substitutions of the variables together with special cases of vanishing
of variables or limiting procedures in (2.12), one can derive more identities of the form of
generating functions (see [26], equations (10.13.19–21) for Hermite polynomials).

A very interesting category of relations for the Laguerre 2D polynomials is the
representation of these polynomials by superpositions of the same set of polynomials, however,
with stretched arguments. We derive these transformations from a unique point of view and
with similar transformations for Hermite and other polynomials in the next section.

3. Transformation formulae for some classes of polynomials and functions

In this section we derive transformation formulae which can be applied to some important
classes of polynomials, in particular to the Hermite polynomials and to the Laguerre 2D
polynomials. A related but different kind of transformation can be applied to countably infinite
sets of functions. Let us begin with the derivation of an auxiliary formula, the meaning of
which becomes immediately clear after considering examples.

Suppose that we have a set of functions of the real or complex variablez (usually
polynomials) which we denote byfn(0; z), (n = 0, 1, 2, . . .). Suppose, furthermore, that
fn(0; z) vanish automatically by settingn = −1,−2, . . . or by definition. Now, we transform
this set of functions or polynomials with a real continuous parameterε into a new setfn(ε; z)
in the following way:

fn(ε; z) ≡
[n/µ]∑
k=0

(−ε)k
k!

fn−µk(0; z) µ = 1, 2, . . . . (3.1)

The choice of the notationε for the parameter should suggest that we can use it as a small
parameter in limiting procedures and indeed forε = 0, one obtains the identical transformation
but it is not necessarily a small parameter. It merely determines a one-parameter group of
transformations withε as the additive parameter. The notation [n/µ] means the integer part
of n/µ. The integerµ is fixed in applications in the desired way. The inversion of the
transformation (3.1) can be readily obtained and possesses the form

fn(0; z) =
[n/µ]∑
k=0

εk

k!
fn−µk(ε; z) (3.2)

that can be considered as a consequence of the group property and the additivity of the parameter
ε. The proof can be given by inserting (3.2) into (3.1) and by reordering the double sum with
evaluation of the arising inner sum as follows:

fn(ε; z) =
[n/µ]∑
k=0

[n/µ−k]∑
l=0

(−ε)kεl
k!l!

fn−µ(k+l)(ε; z) =
[n/µ]∑
j=0

εj

j !
fn−µj (ε; z)

j∑
k=0

(−1)kj !

k!(j − k)!
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=
[n/µ]∑
j=0

εj

j !
fn−µj (ε; z)δj,0 = fn(ε; z). (3.3)

Thus, we have proved that (3.1) and (3.2) form a pair of a transformations together with
its inverse transformation. By the substitutionfn(0; z) ≡ gn(0; z)/n!, the transformation
formulae (3.1) and (3.2) take on the form

gn(ε; z) =
[n/µ]∑
k=0

(−ε)kn!

k!(n− µk)! gn−µk(0; z) gn(0; z) =
[n/µ]∑
k=0

εkn!

k!(n− µk)! gn−µk(ε; z). (3.4)

Forµ = 1 andgn(z) = gn independent onz, it was last refered to as a Bernoulli transformation
[37]. The coefficients in this transformation are the binomial coefficients and the binomial
distribution is also called the Bernoulli distribution. However, contrary to the well known
notions of a Bernoulli distribution and of Bernoulli trials, I could not find the notion of a
Bernoulli transformation in the textbook literature about probability theory and it seems that
this notion was introduced (or rediscovered?) only recently.

We now consider another but similar kind of transformation as in (3.1) with weighted
summation of a set of functionsfn(z; 0)over indices above an arbitrary indexnof the following
kind and written in the form most near to our later application:

fn(ε; z) ≡
∞∑
k=0

εk

k!
fn+νk(0; z) ν = 1, 2, . . . . (3.5)

The inversion of this transformation possesses the form

fn(0; z) =
∞∑
k=0

(−ε)k
k!

fn+νk(ε; z). (3.6)

The proof is in full analogy to (3.3) and we do not write it down. In the next section, we
consider applications of this transformation.

As the most important example of the application of (3.1) and (3.2), we consider the
polynomials fn(0; z) = zn/n!. For µ = 1 this leads to the binomial formula with
fn(ε; z) = (z − ε)n/n! and its inversion. The caseµ = 2 with the same polynomials leads
to the Hermite polynomialsHn(z) which alternatively can be defined by [36, 38, 39] (basic
definition, e.g., [26,33,34])

Hn(z) ≡ exp

(
−1

4

∂2

∂z2

)
(2z)n =

[n/2]∑
k=0

(−1)kn!

k!(n− 2k)!
(2z)n−2k. (3.7)

By applying (3.1) withfn(0; z) = (2z)n/n! andµ = 2, one finds the relation

(
√
ε)n

n!
Hn

(
z√
ε

)
=

[n/2]∑
k=0

(−ε)k
k!

(2z)n−2k

(n− 2k)!
. (3.8)

Now, one can immediately write down the inversion according to (3.2) which provides

(2z)n

n!
=

[n/2]∑
k=0

εk

k!

(
√
ε)n−2k

(n− 2k)!
Hn−2k

(
z√
ε

)
(3.9)

and which can be written in the final form

zn =
(√

ε

2

)n [n/2]∑
k=0

n!

k!(n− 2k)!
Hn−2k

(
z√
ε

)
. (3.10)
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Thus we have derived a formula for powerszn expressed by superpositions of Hermite
polynomials with any desired stretch factor in the argument. In particular, by choosingε = 1,
one obtains

zn = 1

2n

[n/2]∑
k=0

n!

k!(n− 2k)!
Hn−2k(z) = 1

2n
exp

(
1

4

∂2

∂z2

)
Hn(z). (3.11)

It is clear that by possessing this formula, one can easily find the form (3.10) by argument scaling
but first one has to derive one such a formula. The casesµ = 3, 4, . . . andfn(0; z) = zn/n!
lead to arbitrary-order Hermite polynomials [39, 40] which have not been introduced up to
now as standard polynomials in mathematical tables and which have been rarely applied until
now. By settingz = x + iy on the left-hand side in (3.11), one can first apply the binomial
formula and then (3.11) separately to powers ofx andy that leads to

(x + iy)n = 1

2n

n∑
k=0

n!

k!(n− k)! ikHn−k(x)Hk(y). (3.12)

The application of the definition of the Hermite polynomials in connection with (3.9) allows
us, in a simple way, to derive the connection of Hermite polynomials to Hermite polynomials
with stretched argument as follows:

Hn(z) = (
√
ε)n

[n/2]∑
k=0

n!

k!(n− 2k)!

(
ε − 1

ε

)k
Hn−2k

(
z√
ε

)
. (3.13)

The identical representation corresponds here toε = 1. It is clear that the most of the derived
formulae for Hermite polynomials are not totally new and that they can be specialized from
known formulae and, most importantly, the general point of view of their derivation is original
and can be further generalized. If we choosefn(0; z) = zn/

√
n! andµ = 1, 2, . . . , we arrive

at some very unorthodox polynomials. If we choosefn(0; z) = zn/n!2 andµ = 1 in (3.1),
we come to relations connected with Laguerre polynomials which can, however, be derived in
a more general form from the 2D generalization of (3.1) and (3.2) that we next consider.

We now consider polynomialsfm,n(0; z, z∗) of two variables(z, z∗) which in application
to quantum optics are mostly a pair of complex conjugated variables. However, they can be
other independent and also real variables and are in such cases better denoted by, e.g.,(x, y).
The corresponding transformation to (3.1) is now

fm,n(ε; z, z∗) ≡
[{m,n}/µ]∑
j=0

(−ε)j
j !

fm−µj,n−µj (0; z, z∗) µ = 1, 2, . . . (3.14)

together with its inversion

fm,n(0; z, z∗) =
[{m,n}/µ]∑
j=0

εj

j !
fm−µj,n−µj (ε; z, z∗). (3.15)

The proof is fully analogous to (3.3) and we do not write it down. The corresponding
transformation with summation over the upper indices for any index pair(m, n) is given
by

fm,n(ε; z, z∗) ≡
∞∑
k=0

εk

k!
fm+νk,n+νk(0; z, z∗) ν = 1, 2, . . . (3.16)

with the inversion

fm,n(0; z, z∗) =
∞∑
k=0

(−ε)k
k!

fm+νk,n+νk(ε; z, z∗). (3.17)
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The proof is again analogous to the proof for the transformation (3.14) and (3.15) or (3.1) and
(3.2) in the 1D case. We consider applications of this transformation in the next section.

A very important example of the application of (3.14) and (3.15) isfm,n(0; z, z∗) =
(zm/m!)(z∗ n/n!) with µ = 1 leading to Laguerre 2D polynomials and we recall their basic
definition (2.1)

Lm,n(z, z
∗) ≡ exp

(
− ∂2

∂z∂z∗

)
zmz∗ n =

{m,n}∑
j=0

(−1)jm!n!

j !(m− j)!(n− j)! z
m−j z∗ n−j (3.18)

which is in great analogy to definition (3.7) of the Hermite polynomials. If we now choose in
(3.14)fm,n(0; z, z∗) = (zm/m!)(z∗n/n!) andµ = 1, we can write it by using the Laguerre 2D
polynomials in the following specialized form:

(
√
ε)m+n

m!n!
Lm,n

(
z√
ε
,
z∗√
ε

)
=
{m,n}∑
j=0

(−ε)j
j !

zm−j z∗ n−j

(m− j)!(n− j)! (3.19)

and its inversion can immediately be taken from (3.15) providing

zmz∗ n

m!n!
=
{m,n}∑
j=0

εj

j !

(
√
ε)m+n−2j

(m− j)!(n− j)!Lm−j,n−j
(
z√
ε
,
z∗√
ε

)
. (3.20)

This can be written in the following final form:

zmz∗ n = (√ε)m+n
{m,n}∑
j=0

m!n!

j !(m− j)!(n− j)!Lm−j,n−j
(
z√
ε
,
z∗√
ε

)
. (3.21)

In particular, forε = 1 one obtains

zmz∗ n =
{m,n}∑
j=0

m!n!

j !(m− j)!(n− j)!Lm−j,n−j (z, z
∗) (3.22)

which, in compact form, is the convolution (see (2.1) and (2.7); notation∗ for convolution)

zmz∗ n = exp

(
∂2

∂z∂z∗

)
Lm,n(z, z

∗) = 1

π
exp(−zz∗) ∗ Lm,n(z, z∗). (3.23)

Similar to the case of Hermite polynomials in (3.13), one can derive the following more
general formula which represents Laguerre 2D polynomials by the superposition of Laguerre
2D polynomials with stretched argument

Lm,n(z, z
∗) = (√ε)m+n

{m,n}∑
j=0

m!n!

j !(m− j)!(n− j)!
(
ε − 1

ε

)j
Lm−j,n−j

(
z√
ε
,
z∗√
ε

)
. (3.24)

It gives the identical representation forε = 1.
We mention here that the Laguerre 2D polynomials in real representation are connected

with the Hermite polynomials in the following way (derivation in [2], equations (6.11) and
(6.12) or (6.5) and (6.6)):

Lm,n(x + iy, x − iy) = 1

2m+n

m+n∑
j=0

(i2)jP (m−j,n−j)j (0)Hm+n−j (x)Hj (y) (3.25)

with the inversion

Hm(x)Hn(y) = (−i)n
m+n∑
j=0

2jP (m−j,n−j)j (0)Lm+n−j,j (x + iy, x − iy) (3.26)

whereP (α,β)j (u) denotes the Jacobi polynomials taken here with the argumentu = 0.
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4. Limiting procedures with Laguerre 2D polynomials and Hermite polynomials

We derive in this section some relations for the purpose of making limiting procedures in
formulae with Laguerre 2D functions or 2D polynomials. Our starting point is the following
moment series expansion of a Gaussian function derived, e.g., in [1] (equation (B.14)), see
also [24]

1

πε
exp

(
−zz

∗

ε

)
= exp

(
ε
∂2

∂z∂z∗

)
δ(z, z∗) =

∞∑
k=0

εk

k!

∂2k

∂zk∂z∗k
δ(z, z∗). (4.1)

We call such expansions moment series expansions because the coefficients in front of the
derivatives of the delta functions are determined by the moments of the function. They can
be proved by Fourier transformation. By using the equivalent definition of the Laguerre 2D
polynomials in (2.4), one readily obtains the following generalization:

1

πε
exp

(
−zz

∗

ε

)(
− 1√

ε

)m+n

Lm,n

(
z√
ε
,
z∗√
ε

)
=
∞∑
k=0

εk

k!

∂m+n+2k

∂z∗m+k∂zn+k
δ(z, z∗). (4.2)

This relation is of the form of the transformation (3.16) and we can immediately write down
its inversion according to (3.17)

∂m+n

∂z∗m∂zn
δ(z, z∗) = 1

πε
exp

(
−zz

∗

ε

)(
− 1√

ε

)m+n ∞∑
k=0

(−1)k

k!
Lm+k,n+k

(
z√
ε
,
z∗√
ε

)
. (4.3)

Thus, we have obtained a representation of the derivatives of the 2D delta functionδ(z, z∗) by
an infinite series over regular functions. I have checked by graphical representation, with a
computer, the degree of approximation of the 2D delta function in this relation for various
positive values of the parameterε and various numbers of truncation of the infinite sum
(practically, one has to check this only forδ(z, z∗)because the correctness of the derivatives can
then be directly checked by their calculation from the expression forδ(z, z∗) within (4.3) by
using (2.4)). The relations (4.1)–(4.3) are exact identities in the sense of (weak) convergence of
generalized functions (see, e.g., [42–44] for notion of convergence of generalized functions).

By making limiting proceduresε→ 0 in the above relations, only the sum terms tok = 0
survive on the right-hand sides. This leads to

∂m+n

∂z∗m∂zn
δ(z, z∗) = lim

ε→0

1

πε
exp

(
−zz

∗

ε

)(
− 1√

ε

)m+n

Lm,n

(
z√
ε
,
z∗√
ε

)
(4.4)

and is one possibility of the infinite manifold of possibilities to represent the derivatives of a
2D delta function by a limiting procedure from regular functions. The derived relations are
important in applications, for example, to quasiprobabilities for the transition to limiting cases.
Since the corresponding formulae for Hermite polynomials are rarely available in the literature
we will give them here. In analogy to (4.2), one obtains

1√
πε

exp

(
−x

2

ε

)(
− 1√

ε

)n
Hn

(
x√
ε

)
=
∞∑
k=0

εk

k!22k
δ(n+2k)(x). (4.5)

One can look to this relation as a transformation ofδ(n)(x)/2n which satisfies the form of
the more general transformation (3.6) withν = 2. From its inversion in (3.7), one finds the
following inversion of (4.5):

δ(n)(x) = 1√
πε

exp

(
−x

2

ε

)(
− 1√

ε

)n ∞∑
k=0

(−1)k

k! 22k
Hn+2k

(
x√
ε

)
. (4.6)

This is a regularized representation of the derivatives of the delta function by an infinite series
with a (positive) parameterε. I have intensively checked this relation forδ(x) by a computer
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and did not find any contradictions (the derivativesδ(n)(x) within (4.6) are consistent with
δ(x)).

From the relations (4.5) or (4.6), one finds the following representation of the derivatives
of the delta function by a limiting procedure:

δ(n)(x) = lim
ε→0

1√
πε

exp

(
−x

2

ε

)(
− 1√

ε

)n
Hn

(
x√
ε

)
. (4.7)

Thus we have obtained the most important relations for making limiting procedures in relations
written by means of the Laguerre 2D polynomials and Hermite polynomials that is so often
desirable in applications.

Another kind of relation with Laguerre 2D polynomials which often appears in applications
is the ‘disentanglement’ of products of Gaussian factors with delta functions and their
derivatives. One has the following relation in the 2D case:

exp(−µzz∗) ∂m+n

∂zm∂z∗n
δ(z, z∗) =

{m,n}∑
j=0

(−µ)jm!n!

j !(m− j)!(n− j)!
∂m+n−2j

∂zm−j ∂z∗ n−j
δ(z, z∗)

= (√µ)m+nLm,n

(
1√
µ

∂

∂z
,

1√
µ

∂

∂z∗

)
δ(z, z∗). (4.8)

It was derived in [1] together with the more general relation for the ‘disentanglement’ of
products of functions with derivatives of delta functions which possesses the form (see also [41],
equation (8.20))

f (z, z∗)
∂m+n

∂zm∂z∗n
δ(z, z∗) =

m∑
k=0

n∑
l=0

(−1)k+lm!n!

k!(m− k)!l!(n− l)!
∂k+lf

∂zk∂z∗l
(0, 0)

∂m+n−k−l

∂zm−k∂z∗n−l
δ(z, z∗).

(4.9)

The corresponding relation to (4.8) in the 1D case is

exp(−µx2)δ(n)(x) =
[n/2]∑
k=0

(−µ)kn!

k!(n− 2k)!
δ(n−2k)(x) = (√µ)nHn

(
1

2
√
µ

∂

∂x

)
δ(x). (4.10)

We have applied (4.8) and (4.10) in [1] to obtain a ‘disentangled’ form of the Sudarshan
representation [7] of the Glauber–Sudarshan quasiprobability (see also [19,20] for Fock states).

5. Quasiprobabilities in Fock-state representation and their inversion

We begin in this section with the consideration of applications of Laguerre 2D polynomials
and 2D functions in quantum optics. First, we consider the Fock-state representation of the
class of quasiprobabilitesFr(α, α∗) with the vector parameterr ≡ (r1, r2, r3) specialized as
r = (0, 0, r) (s-parametrized class of quasiprobabilities [9, 10],r3 = r = −s) by means of
the Laguerre 2D polynomials.

The mentioned class of quasiprobabilitiesF(0,0,r)(α, α∗) takes on the following form in
Fock-state representation (e.g., [1]):

F(0,0,r)(α, α
∗) = 2

π(1 + r)
exp

(
−2αα∗

1 + r

) ∞∑
m=0

∞∑
n=0

〈m|%|n〉

× 1√
m!n!

(√
1− r
1 + r

)m+n

Ln,m

(
2α√

1− r2
,

2α∗√
1− r2

)
. (5.1)
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The inversion of this relation that means the determination of the matrix elements〈m|%|n〉
of the density operator% from the quasiprobabilities can be made in the most simple way by
using the orthonormality and completeness of the Laguerre 2D functions with the following
result written by Laguerre 2D polynomials ((i/2) dα ∧ dα∗ = dRe(α) ∧ dIm (α) ≡ d2α):

〈m|%|n〉 = π√
m!n!

(√
1 + r

1− r

)m+n ∫
i

2
dα ∧ dα∗ F(0,0,r)(α, α∗)

× 2

π(1− r) exp

(
−2αα∗

1− r
)
Lm,n

(
2α√

1− r2
,

2α∗√
1− r2

)
. (5.2)

Note that the indices of the Laguerre 2D polynomials in the relations (5.1) and (5.2) are
reversed in comparison to each other. To see the correctness of (5.1) for the quasiprobabilities
in Fock-state representation, one can use their derivation and explicit representation given,
e.g., in [1] in connection with the definition of the Laguerre 2D polynomials in the present
paper or of Laguerre 2D functions in [2]. It is clear that many partial results are much older
(see, e.g., [9,10]). In particular, the Wigner quasiprobabilityW(α, α∗) corresponding tor = 0
in (5.1) was already derived for Fock states in [6] and the coherent-state (or Husimi–Kano)
quasiprobabilityQ(α, α∗) corresponding tor = 1 in (4.1) is very easy to obtain for all operators
|n〉〈m| from the most simple definition of this quasiprobability byQ(α, α∗) ≡ 〈α|%|α〉/π
given by Kano [8] in connection with the Fock-state representation of coherent states|α〉. The
Glauber–Sudarshan quasiprobabilityP(α, α∗) [6, 7] corresponding tor = −1 in (4.1) which
is the most singular of the usual quasiprobabilities was given in Fock-state representation in [7]
but the connection of this representation with the limiting caser = −1 in (5.1) is not very easy
to establish [1].

The well known Fock-state representation of the Husimi–Kano quasiprobability

Q(α, α∗) = 1

π
exp(−αα∗)

∞∑
m=0

∞∑
n=0

〈m|%|n〉 α
nα∗m√
m!n!

(5.3)

can be obtained from (5.1) forr → 1 by usingLn,m(z, z∗) ≈ znz∗m for |z| → ∞ (see (2.1)).
Its inversion can be directly obtained from the explicit form of the coefficients in this Taylor
series expansion

〈m|%|n〉 = π√
m!n!

{
∂m+n

∂α∗m∂αn
exp(αα∗)Q(α, α∗)

}
α=α∗=0

= π(−i)m+n

√
m!n!

{
Lm,n

(
i
∂

∂α
, i

∂

∂α∗

)
Q(α, α∗)

}
α=α∗=0

. (5.4)

The form in the first line sometimes has an advantage in comparison with the form in the
second line with disentangled derivatives ofQ(α, α∗), for example, for pure states% = |ψ〉〈ψ |
because then exp(αα∗)πQ(α, α∗) splits into a product of two analytic functionsψ(α∗) and
ψ∗(α) which are the Bargmann representations of the state obtained by scalar multiplication
of |ψ〉 and〈ψ | with the analytic (non-normalized) coherent states.

The Wigner quasiprobabilityW(α, α∗) corresponding tor = 0 is given in Fock-state
representation by

W(α, α∗) = 2

π
exp(−2αα∗)

∞∑
m=0

∞∑
n=0

〈m|%|n〉 1√
m!n!

Ln,m(2α, 2α
∗) (5.5)

with the inversion

〈m|%|n〉 = 2√
m!n!

∫
i

2
dα ∧ dα∗W(α, α∗) exp(−2αα∗)Lm,n(2α, 2α∗). (5.6)
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This shows that the Wigner quasiprobabilityW(α, α∗) is most simply connected with the
Laguerre 2D polynomials and 2D functions.

The Glauber–Sudarshan quasiprobabilityQ(α, α∗) corresponding tor = −1 has to be
extracted from (5.1) by the limiting procedureε → 0 after settingr = −√1− 4ε and by
using (4.3) and (4.6) with the result [1] ( [19,20] for Fock states):

P(α, α∗) = exp(αα∗)
∞∑
m=0

∞∑
n=0

〈m|%|n〉 (−1)m+n

√
m!n!

∂m+n

∂αm∂α∗ n
δ(α, α∗)

=
∞∑
m=0

∞∑
n=0

〈m|%|n〉 im+n

√
m!n!

Lm,n

(
i
∂

∂α
, i

∂

∂α∗

)
δ(α, α∗). (5.7)

The inversion of this relation provides

〈m|%|n〉 = 1√
m!n!

∫
i

2
dα ∧ dα∗ P(α, α∗) exp(−αα∗)αmα∗n. (5.8)

Instead of the 2D delta functionδ(α, α∗), one can use in (5.7) a central-symmetric 1D delta
function that was originally made by Sudarshan [7]. The connection to the form (5.7) was
discussed in detail in [1] and the disentangled form for the multiplication of the delta function
with a Gaussian function, both in the 2D form and in the central-symmetric 1D form, was
given.

6. Quasiprobabilities in representation by ordered moments and their inversion

The reconstruction of the density operator% (or of an arbitrary other operator) from its normally
ordered moments〈%a†kal〉 was derived in [21] (see also [45–47]) and possesses the following
form (〈A〉 ≡ Trace(A))

% =
∞∑
k=0

∞∑
l=0

ak,l〈%a†kal〉 ak,l ≡
{k,l}∑
j=0

(−1)j |l − j〉〈k − j |
j !
√
(k − j)!(l − j)! . (6.1)

There is a duality of this relation to the expansion of an operator% in normal ordering of powers
of boson annihilation and creation operator(a, a†) as follows:

% =
∞∑
k=0

∞∑
l=0

〈%ak,l〉a†kal (6.2)

with the same set of auxiliary operatorsak,l as in (6.1). Relation (6.1) shows that the complete
set of normally ordered moments〈%a†kal〉 (or any otherwise ordered moments) contains the
complete information of the density operator%. This can be formulated in ‘pure’ form as a
completeness relation for the dual sets of basis operatorsa†kal and ofak,l which is similar to
dual sets of contravariant and covariant basis vectors in a linear space [21]. Therefore, any
other complete (or overcomplete) set of information about the density operator as, for example,
the quasiprobabilities can be expressed by these moments.

From (6.1), one obtains the diagonal coherent-state representation which in the case of the
density operator% is proportional to the coherent-state quasiprobabilityQ(α, α∗) ≡ 〈α|%|α〉/π
and can be expressed by the usual Laguerre polynomials ( [21] equations (3.6)–(3.8) or (3.12))
but can be represented with advantage by the Laguerre 2D polynomials or the Laguerre 2D
functions as follows:

Q(α, α∗) = 1

π
exp(−αα∗)

∞∑
k=0

∞∑
l=0

〈%a†kal〉 1

k!l!
Lk,l(α, α

∗)

= 1√
π

exp

(
−αα

∗

2

) ∞∑
k=0

∞∑
l=0

〈%a†kal〉 1√
k!l!

lk,l(α, α
∗). (6.3)
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The last relation can be inverted by using the orthonormality of the Laguerre 2D functions
providing the normally ordered moments in dependence onQ(α, α∗) ( [21] equation (3.10) in
a more general operator form; see also [9, 25, 48])

〈%a†kal〉 =
√
πk!l!

∫
i

2
dα ∧ dα∗Q(α, α∗) exp

(
αα∗

2

)
ll,k(α, α

∗)

=
∫

i

2
dα ∧ dα∗Q(α, α∗)Ll,k(α, α∗) Q(α, α∗) ≡

〈
%
|α〉〈α|
π

〉
. (6.4)

We see that the most simple expression (without a Gaussian factor) is obtained by using the
Laguerre 2D polynomials instead of the Laguerre 2D functions. The last two and similar
relations can be represented as pure operator identities by separation of the arbitrary density
operator% [21]. The operatorsTr(α, α∗) obtained by separation of the density operator% from
quasiprobabilitiesFr(α, α∗) = 〈% Tr(α, α∗)〉 are called transition operators [36].

The generalization of (6.3) to the whole class of quasiprobabilitiesF(0,0,r)(α, α
∗) can be

made, for example, by using the relation (see, e.g., [36], equations (5.1), (5.4) and (5.7))

F(0,0,r)(α, α
∗) = exp

(
−1− r

2

∂2

∂α∂α∗

)
Q(α, α∗). (6.5)

By applying the alternative representation (2.4) of the Laguerre 2D polynomials and after
changing the order of the commutative products of two operators with partial derivatives, one
obtains the intermediate result

F(0,0,r)(α, α
∗) = 1

π

∞∑
k=0

∞∑
l=0

〈%a†kal〉 (−1)k+l

k!l!

∂k+l

∂α∗ k∂αl
exp

(
−1− r

2

∂2

∂α∂α∗

)
exp(−αα∗)

= 2

π(1 + r)

∞∑
k=0

∞∑
l=0

〈%a†kal〉 (−1)k+l

k!l!

∂k+l

∂α∗ k∂αl
exp

(
−2αα∗

1 + r

)
(6.6)

which, by again using (2.4), can be represented by means of the Laguerre 2D polynomials in
the final form

F(0,0,r)(α, α
∗) = 2

π(1 + r)
exp

(
−2αα∗

1 + r

) ∞∑
k=0

∞∑
l=0

〈%a†kal〉

× 1

k!l!

(√
2

1 + r

)k+l
Lk,l

(√
2

1 + r
α,

√
2

1 + r
α∗
)

(6.7)

or by using the Laguerre 2D functions

F(0,0,r)(α, α
∗) = 2√

π(1 + r)
exp

(
− αα

∗

1 + r

) ∞∑
k=0

∞∑
l=0

〈%a†kal〉

× 1√
k!l!

(√
2

1 + r

)k+l
lk,l

(√
2

1 + r
α,

√
2

1 + r
α∗
)
. (6.8)

The inversion can be obtained by using the orthonormality of the Laguerre 2D functions with
the result

〈%a†kal〉 =
√
πk!l!

(√
1 + r

2

)k+l ∫
i

2
dα ∧ dα∗F(0,0,r)(α, α∗)

× exp

(
αα∗

1 + r

)
ll,k

(√
2

1 + r
α,

√
2

1 + r
α∗
)

(6.9)
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or written by the Laguerre 2D polynomials (cf [48], equations (8) and (9))

〈%a†kal〉 =
(√

1 + r

2

)k+l ∫
i

2
dα ∧ dα∗F(0,0,r)(α, α∗)Ll,k

(√
2

1 + r
α,

√
2

1 + r
α∗
)
. (6.10)

We do not have a Gaussian factor under the integral and the normally ordered moments are
almost directly obtained from the integral over the quasiprobabilities multiplied with Laguerre
2D polynomials. In particular, in the case of the Wigner quasiprobability(r = 0) one has

W(α, α∗) = 2

π
exp(−2αα∗)

∞∑
k=0

∞∑
l=0

〈%a†kal〉 (
√

2)k+l

k!l!
Lk,l(
√

2α,
√

2α∗) (6.11)

with the inversion

〈%a†kal〉 = 1

(
√

2)k+l

∫
i

2
dα ∧ dα∗W(α, α∗)Ll,k(

√
2α,
√

2α∗). (6.12)

The Glauber–Sudarshan quasiprobabilityP(α, α∗) corresponding tor = −1 has to be obtained
from (6.8) by a limiting procedureε → 0 after settingr = −1 + 2ε and by using (4.3) with
the result

P(α, α∗) =
∞∑
k=0

∞∑
l=0

〈%a†kal〉 (−1)k+l

k!l!

∂k+l

∂α∗k∂αl
δ(α, α∗). (6.13)

The inversion of (6.13) following from (6.10) forr →−1 is the well known relation

〈%a†kal〉 =
∫

i

2
dα ∧ dα∗P(α, α∗)α∗kαl. (6.14)

Both relations (6.13) and (6.14) can be more directly obtained from the following definition
of P(α, α∗) [36]:

P(α, α∗) =
〈
% exp

(
−a† ∂

∂α∗

)
exp

(
−a ∂

∂α

)〉
δ(α, α∗) (6.15)

and from its inversion

% =
∫

i

2
dα ∧ dα∗P(α, α∗)|α〉〈α| (6.16)

which mostly, however, serves as the primary definition ofP(α, α∗) [6, 7]. By Taylor series
expansion of the exponential operators in the first and by forming〈%a†kal〉 in the second
equation, one obtains (6.13) and (6.14).

The transition between different kinds of ordering itself within the line of normal ordering
r = −1 through symmetrical orderingr = 0 to antinormal orderingr = 1 can also be expressed
with advantage by means of the Laguerre 2D polynomials (Or{. . .} ordering symbol in analogy
to Fr(α, α∗))

O(0,0,s){a†kal} =
{k,l}∑
j=0

k!l!

j !(k − j)!(l − j)!
(
− r − s

2

)j
O(0,0,r){a†k−j al−j }

=
(√

r − s
2

)k+l
O(0,0,r)

{
Lk,l

(√
2

r − s a
†,

√
2

r − s a
)}

. (6.17)

By using the transformation relations for the Laguerre 2D polynomials in (3.19), one can
generalize (6.7) to

F(0,0,r)(α, α
∗) = 2

π(r − s) exp

(
−2αα∗

r − s
) ∞∑
k=0

∞∑
l=0

〈%O(0,0,s){a†kal}〉

× 1

k!l!

(√
2

r − s

)k+l
Lk,l

(√
2

r − s α,
√

2

r − s α
∗
)

(6.18)
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with the inversion

〈%O(0,0,s){a†kal}〉 =
(√

r − s
2

)k+l ∫
i

2
dα ∧ dα∗ F(0,0,r)(α, α∗)

×Ll,k
(√

2

r − s α,
√

2

r − s α
∗
)
. (6.19)

Thus we expressed the quasiprobabilities of the classF(0,0,r)(α, α
∗) by ordered moments of

the class〈%O(0,0,s){a†kal}〉 and have obtained the inversion. In casesr = s, one has to
make limiting procedures with results in analogy to (6.13) and (6.14) with the substitutions
P(α, α∗) → F(0,0,r)(α, α

∗) and〈% a†kal〉 → 〈%O(0,0,r){a†kal}〉, for exampleW(α, α∗) and
〈% S{a†kal}〉 in the case of symmetrical ordering.

The results of this section show the appropriateness of the Laguerre 2D polynomials for
problems of quantum optics connected with operator ordering.

7. Transformations of the quasiprobabilities

In this section we apply transformation formulae for the Laguerre 2D polynomials and their
limiting cases derived in sections 3 and 4. There are many possibilities and we show only
some principal cases without specialization in all details.

We begin with the Pěrina–Mišta representation [12, 13, 22–24] which is a regularized
representation of the Glauber–Sudarshan quasiprobabilityP(α, α∗) reformulated in [1,2]. By
inserting the ‘regularized’ representation of the derivatives of the 2D delta function by means
of the Laguerre 2D polynomials in (4.3) into formula (5.7) forP(α, α∗), after substitutions of
the summation indices, one finds

P(α, α∗) = exp(αα∗)
1

πε
exp

(
−αα

∗

ε

) ∞∑
m=0

∞∑
n=0

%m,n(ε)√
m!n!(

√
ε)m+n

Ln,m

(
α√
ε
,
α∗√
ε

)
(7.1)

with the following abbreviation for effective matrix elements%m,n(ε) and their inversion

%m,n(ε) ≡
{m,n}∑
j=0

(−ε)j√m!n!

j !
√
(m− j)!(n− j)! %m−j,n−j (0) = 〈m|

( ∞∑
j=0

(−ε)j
j !

a†j%aj
)
|n〉

%m,n(0) =
{m,n}∑
j=0

εj
√
m!n!

j !
√
(m− j)!(n− j)! %m−j,n−j (ε) ≡ 〈m|%|n〉.

(7.2)

These formulae for the effective matrix elements possess the form of the more general
transformations (3.14) and (3.15) withfm,n(0; z, z∗) = %m,n(0)/

√
m!n! andµ = 1 and the

inversion becomes immediately obvious. In comparison to our former derivation [1, 2] or to
the derivation in [22, 23], we have extracted and expressed the essence of such derivations in
the pure mathematical form as the transformation formulae (4.2) or (4.4) for the representation
of Laguerre 2D polynomials by derivatives of the 2D delta function and their inversion. Since
it is easy to find the inversion of (7.1) that means the effective matrix elements%m,n(ε) in
dependence onP(α, α∗), we do not write it down (see section 5 for analogous inversions).
The new effective matrix elements%m,n(ε) are not normalized in the same way as%m,n(0) as
the following short calculation clarifies:

∞∑
n=0

%n,n(ε) = 1

1 + ε

∞∑
m=0

%m,m(0)

(1 + ε)m

∞∑
n=0

%n,n(0) = 1. (7.3)
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This normalization depends not only onε but also on the matrix elements%m,m(0). A
(normalized) effective density operator%(ε)which could be defined by the content in brackets
between the Fock states〈m| and|n〉 in (7.2) is not always positively definite.

As another example, we consider the transformation of the Husimi–Kano quasiprobability
Q(α, α∗) in Fock-state representation given in (5.3) by means of (3.21). This provides in a
first step

Q(α, α∗) = 1

π
exp(−αα∗)

∞∑
m=0

∞∑
n=0

〈m|%|n〉

× (
√
ε)m+n

√
m!n!

{m,n}∑
j=0

m!n!

j !(m− j)!(n− j)!Ln−j,m−j
(
α√
ε
,
α∗√
ε

)
. (7.4)

One can also look to this expression ofQ(α, α∗) by Laguerre 2D polynomials in the following
way. The functions connected with the matrix elements〈m|%|n〉 can be expressed by one of
the quasiprobabilities of the classF(0,0,r)(α, α∗) with stretched arguments taken for certain
superpositions of lower matrix elements〈m − j |%|n − j〉, (j = 0, 1, . . . , {m, n}). If one
choosesF(0,0,1−2ε)(

√
1− εα,√1− εα∗) for given ε 6 1, one can expressQ(α, α∗) for

any matrix element〈m|%|n〉 by the quasiprobabilitiesF(0,0,1−2ε)(
√

1− εα,√1− ε α∗) for
a superposition of matrix elements〈m − j |%|n − j〉 with full absorption of the Gaussian
factor exp(−αα∗) in F(0,0,1−2ε)(

√
1− εα,√1− εα∗). By choosingε = 1

2, one obtains an
equivalence to the Wigner quasiprobabilityW(α/

√
2, α∗/

√
2) for a certain substitute of matrix

elements. This was made in [25] for the diagonal elements〈n|%|n〉 of the density operator
together with the inversion. The generalization for nondiagonal elements is contained in (7.4)
by choosingε = 1

2 and by using (5.5). The inversion is contained as a special case in the
generalization considered below but it is easy to obtain for diagonal elements.

We consider another aspect of (7.4). By introduction of new effective matrix elements in
a second step after substitutions of the summation indices, one can write (7.4) in the form

Q(α, α∗) = 1

π
exp(−αα∗)

∞∑
m=0

∞∑
n=0

%m,n(ε)√
m!n!

(
√
ε)m+nLn,m

(
α√
ε
,
α∗√
ε

)
(7.5)

with the following definition of%m,n(ε) together with its inversion (different from (7.2))

%m,n(ε) ≡
∞∑
k=0

εk
√
(m + k)!(n + k)!

k!
√
m!n!

%m+k,n+k(0) = 〈m|
( ∞∑
k=0

εk

k!
ak%a†k

)
|n〉

%m,n(0) =
∞∑
k=0

(−ε)k√(m + k)!(n + k)!

k!
√
m!n!

%m+k,n+k(ε) ≡ 〈m|%|n〉.
(7.6)

In contrast to (7.2), the new effective matrix elements%m,n(ε) contain contributions from all
Fock-state matrix elements above〈m|%|n〉 for given (m, n). The normalization of the new
effective matrix elements is clarified by the relation

∞∑
n=0

%n,n(ε) =
∞∑
m=0

(1 + ε)m%m,m(0). (7.7)

If one forms an effective (nonnormalized) ‘density’ operator%(ε) according to

%(ε) =
∞∑
k=0

εk

k!
ak%a†k (7.8)
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then it is not always normalizable for positiveε. For example, for thermal states%th with mean
valueN̄ of the number operatorN = a†a, one has

%th = 1

1 + N̄

∞∑
n=0

(
N̄

1 + N̄

)n
|n〉〈n|

∞∑
n=0

%n,n(0) = 1

%(ε) = 1

1 + N̄ − εN̄
∞∑
n=0

(
N̄

1 + N̄ − εN̄

)n
|n〉〈n|

∞∑
n=0

%n,n(ε) = 1

1− εN̄

(7.9)

which is convergent for positiveε only under the conditionεN̄ < 1 and is therefore only in
this case a trace-class operator. Nevertheless, it seems that (7.5) together with (7.6) can be
used for a ‘restricted’ design of quasiprobabilities, for example, if one looks for states which
provide a certain desired quasiprobabilityQ(α, α∗) in the form of a simple superposition of
Laguerre 2D polynomials. By using the orthonormality relations for the Laguerre 2D functions,
one first determines the effective matrix elements%m,n(ε) and then by the inverse relations the
necessary Fock-state matrix elements〈m|%|n〉. We call this ‘restricted’ design for the following
reason. In principle, for any given quasiprobabilityF(0,0,r)(α, α∗), in particularW(α, α∗) or
Q(α, α∗), one can determine the necessary Fock-state matrix elements〈m|%|n〉 by the relation
(5.2) but this way can be troublesome if the functions are weakly related to the Laguerre 2D
polynomials. It is necessary to underline that, if one has found an effective density operator
%(ε) not contradicting the conditions for density operators, then (7.8) does not provide a recipe
for its realization because the transformation%→ %norm(ε) is not a unitary transformation but
is a superoperator acting on%.

By using the more general transformation of the Laguerre 2D polynomials in (3.24), one
can transform the class of quasiprobabilitiesF(0,0,r)(α, α∗) (5.1) to the representation

F(0,0,r)(α, α
∗) = 2

π(1 + r)
exp

(
−2αα∗

1 + r

) ∞∑
m=0

∞∑
n=0

%m,n(ε)
1√
m!n!

(√
1− r
1 + r

+ ε

)m+n

×Ln,m
(

2α√
(1 + r)(1− r + ε(1 + r))

,
2α∗√

(1 + r)(1− r + ε(1 + r))

)
(7.10)

with the same effective matrix elements as in (7.6), independently onr

%m,n(ε) ≡
∞∑
k=0

εk
√
(m + k)!(n + k)!

j !
√
m!n!

〈m + k|%|n + k〉

〈m|%|n〉 ≡
∞∑
k=0

(−ε)k√(m + k)!(n + k)!

j !
√
m!n!

%m+k,n+k(ε)

(7.11)

which is identical with (7.5) and (7.6) forr = 1. The most common representation (5.1) of
the quasiprobabilities is obtained forε = 0. In particular, alternative representations of the
Wigner quasiprobabilityW(α, α∗) which are contained in (7.10) as the special caser = 0
seem to be interesting. As was already said for the case of the coherent-state quasiprobaility
Q(α, α∗), a ‘restricted’ design of Wigner quasiprobabilities given by simple combinations of
Laguerre 2D functions with stretched arguments or by products of Hermite functions and the
determination of the corresponding density operators should become possible.

8. Conclusion

We have introduced Laguerre 2D polynomials and have considered some of their most essential
properties. In particular, we have derived transformation formulae for the Laguerre 2D
polynomials (and also Hermite polynomials) from a more general kind of transformation
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applicable to some classes of polynomials. Furthermore, we derived limiting cases of the
Laguerre 2D polynomials and related regularized representations of the derivatives of the 2D
delta function. The transformation formulae between Laguerre 2D polynomials also seem to
be useful for extending the possibilities of integration.

We applied the Laguerre 2D polynomials and 2D functions to the solution of some
problems of quantum optics. In particular, we have represented the quasiprobabilities in Fock-
state basis and in representation by the normally ordered moments and by more generally
ordered moments whereby the inversion of these formulae is obtained. The application of the
derived transformation formulae leads to representations of the quasiprobabilities by Laguerre
2D polynomials with stretched arguments and with the stretch factor as a free parameter
and to deformed effective Fock-state matrix elements. All these considerations show the
appropriateness of the introduced Laguerre 2D polynomials and Laguerre 2D functions.

The Laguerre 2D functions are eigenstates of the degenerate 2D harmonic oscillator.
The Hamilton operator of this system is invariant with regard toSU(2) transformations of an
orthonormal basis if one splits the globalU(1) invariance of quantum mechanics from the more
generalU(2) = U(1)×SU(2) invariance of the harmonic 2D oscillator. The consideration of
the transformations ofSU(2)or, more generally, ofSL(2, C) leads to the introduction of a more
general (real or complex) three-parameter class of 2D polynomials and 2D functions which
includes the Laguerre 2D polynomials considered here as well as products of two Hermite
polynomials as special cases and possesses a close connection to the two-variable Hermite
polynomials. The essential point is the generalization of the generating function (2.10) or
the generalization of equation (3.4) in [2] in application to powers of more general linear
combinations of(z, z∗) or (x, y), where Jacobi polynomialsP (α,β)j (u) appear in the transition
formulae not only with the argumentu = 0 but with real arguments between−1 and +1 (case
SU(2)) or with complex arguments. This appears to complete the introduction of different
sets of orthonormalized functions connected with the degenerate 2D harmonic oscillator and
leads to their unification. The embedding of the dynamical groupSU(2) of a 2D harmonic
oscillator into the general ten-parameter symplectic groupSp(4, R) of a two-mode system
which is equivalent to the De-Sitter groupSO(3, 2) [18] with different subgroupsSU(1, 1) of
squeezing and the proper Lorentz group as another subgroup should reveal relations to many
other problems of quantum theory.

The Laguerre 2D polynomials and 2D functions can also be applied with advantage in
classical optics for the treatment of Gauss–Laguerre beams which are solutions of the wave
equation in the paraxial approximation. In the case of Gauss–Laguerre beams, one has as a
third variable, the propagation direction, which is usually denoted byz whereasz ≡ x + iy,
z∗ ≡ x − iy in our treatment of Laguerre 2D functions is related to the(xy)-plane. One
can overcome this conflict by renaming the variables(z, z∗) in our treatment of the Laguerre
2D polynomials by(z, z∗) → (z+, z−). I had this in mind together with the treatment of
right-hand and left-hand circular polarization, when I denoted the annihilation and creation
operators introduced in [2] by(a+, a−) and(a†

+, a
†
−).

The obtained simple relations in analogy to relations for Hermite polynomials together
with the fundamental applications in quantum optics justify the introduction of the Laguerre
2D polynomials beside the Laguerre 2D functions introduced and discussed in [1,2].
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Appendix A. A supplement to associated Laguerre polynomials

In this appendix I make a supplement about one relation of the associated (or generalized)
Laguerre polynomialsLαn(u) to the special Laguerre polynomialsLn(u) ≡ L0

n(u)which seems
to be absent in the most popular and most often used collections of formulae and tables. The
associated Laguerre polynomials are defined by [26,33–35]

Lαn(u) ≡
1

n!
u−αeu

∂n

∂un
e−uun+α = 1

n!
u−α

(
∂

∂u
− 1

)n
un+α (A.1)

and are explicitly given by

Lαn(u) =
n∑
j=0

(n + α)!

j !(n + α − j)!(n− j)! (−u)
n−j =

n∑
k=0

(α + n)!

k!(α + k)!(n− k)! (−u)
k. (A.2)

For integerα or by using fractal differentiation or integration for arbitraryα, (A.1) can be
substituted by

Lαn(u) =
(−1)n

n!
eu
(
− ∂

∂u

)n+α

e−uun = (−1)n

n!

(
1− ∂

∂u

)n+α

un (A.3)

with (
1− ∂

∂u

)n+α

≡
∞∑
j=0

(−1)j (n + α)!

j !(n + α − j)!
∂j

∂uj
(A.4)

in the sense of the Taylor series expansion of the function(1− x)n+α. One can prove (A.3) by
explicit calculation of the derivatives ofun according to the expansion (A.4) and by comparison
of the result with (A.2). I remark in this connection that (A.1) and (A.3) considered as
differential or integral operators are not equivalent and lead to the same result only in application
to functions proportional tof (u) = 1 as one easily finds by choosingf (u) = um. Therefore,
an identity of (A.1) and (A.3) cannot be proved on the operator level. The representation (A.3)
leads to the following new connection of the associated Laguerre polynomialsLαn(u) with the
special caseLn(u) ≡ L0

n(u):

Lαn(u) =
(

1− ∂

∂u

)α
Ln(u). (A.5)

On the other hand, one easily obtains for integerα the following known representation of
Lαn(u) byLn+α(u):

Lαn(u) =
(
− ∂

∂u

)α
Ln+α(u). (A.6)

Relation (A.5) possesses the advantage in comparison to (A.6) that it also works in the case of
fractalα.

I mention here that some older textbooks and tables, for example, Morse and Feshbach [49]
and, up to the third Russian edition Gradshteyn and Ryzhik [34], use slightly different
definitions of the associated Laguerre polynomials (moreover, the definitions in [49] and in
older editions of [34] are also different from each other; from the fourth Russian edition
on, [34] uses the modern definition given in (A.1) and this should be similar in the many
later translations of [34]). The formulae of quantum optics with Laguerre polynomials in the
monographs of Peřina [12,13] use the now rarely applied definition of Morse and Feshbach [49].
Furthermore, I mention that some now comparatively old monographs, e.g., [50–52] define
the associated Laguerre polynomialsLαn(u) or sometimes denoted byL(α)n (u) by α-fold
differentiation ofLn(u) whereas in the new definition they are obtained according to (A.6) by



3198 A Wünsche

α-fold differentiation ofLn+α(u) and multiplication with(−1)α (for integerα) or according
to (A.5) by application of the operator(1 − ∂/∂u)α to Ln(u) that is possible not only for
integerα but for fractalα too. All this means that in the modern definition, the maximal power
of u in Lαn(u) is un independently onα with the coefficient(−1)n/n! in front which is also
independent onα. Additionally, I mention that the notion ‘Laguerre polynomials’ forLn(u)
and ‘associated Laguerre polynomials’ forLαn(u) are not uniform in the literature and that the
last are often called ‘generalized Laguerre polynomials’ corresponding to the historical fact
that Laguerre did not investigate them.
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